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The densities, as a function of temperature and pressure, of several main-chain liquid-crystalline polymers 
were measured. The polymers were a copolyester and a series of azomethine ether polymers containing 
flexible spacer groups along the chain. An equation-of-state theory was developed, which was based on a 
cell model where expansion of the lattice occurred only in two dimensions. The ability of the theory to 
describe the PVT properties was investigated and compared to a simple cell model that has been used for 
flexible polymers. It was found that the liquid-crystal cell model described the PVT properties of the 
liquid-crystalline polymers better than the simple cell model. The fit became worse for polymers with 
flexible spacing groups, and the equation did not describe flexible polymers such as polyethylene. It is 
inferred that the liquid-crystal model gives a better physical description of the structure of rigid polymers. 
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I N T R O D U C T I O N  

The P V T  properties of substances can be described by 
equations of state. One class of equations are based on 
cell models where N molecules, or parts of molecules, 
are considered to be located within distinct cells. The 
partition function can be written as1'2: 

Z,  = g[2-  3/.)f exp(-- Eo/kT)] N (1) 

where 2=(h2/mkT)l /2;  m is the mass of a molecule or 
molecule segment; E 0 is the potential energy of 
interaction of a molecule at its origin within its cell with 
all other molecules, at their cell centres; vf is the free 
volume; and g is the communal entropy, which reflects 
the ability of a molecule to move to other cells, and is 
taken to be a constant, 

The equation of state can then be derived from: 

P = kT[d(ln Z , ) / dV] r  (2) 

Within this formalism, the equation of state can be 
calculated for various cell geometries and for various 
potential forms for the interaction. Equations have also 
been developed that include the possibility of vacant 
cells 3'4, which might hope to work over a wide range of 
densities where the assumption of a constant value for 9 
may not be a good approximation. 

The equations of state that were developed for small 
molecules have been applied with some success to 
polymers by assuming that a polymer segment now 
occupies a lattice site. The problem of connectivity is 
not properly addressed but, nevertheless, the models 
perform reasonably well 5'6. It is found that those 
equations which assume that the interaction scales as 
I/V, such as that developed by Flory and coworkers, do 
not describe the P V T  properties of polymer melts as well 
as those which are based on a Lennard-Jones 6-12 
potential. 

In a main-chain liquid-crystalline polymer the 
orientation and the connectivity would appear to be even 
more serious problems. In this paper we examine the 

P V T  properties of such polymers and the performance 
of cell models in describing them. We also compare a 
model that takes into account the orientation and 
connectivity. 

THEORY 

In modelling the properties of the liquid-crystalline 
polymers, we will use a cell model approach. In the cell 
model, the polymer is assumed to be made up of n mers, 
which are laid down on a lattice. Each mer is allowed 
to wander about its cell, and all cells are assumed to be 
occupied. A clear distinction is made between the internal 
and external degrees of freedom of each mer. Only the 
external degrees of freedom are manifested in the P V T  
properties of the liquid. Each mer has 3c degrees of 
freedom and c is a constant independent of the state 
variables. The mers interact with each other through a 
Lennard-Jones 6-12 potential. In the case of polymers 
with a flexible backbone, the connectivity of the polymer 
chains is taken into account by the choice of the value 
ofc. The partition function for this system is of the form: 

Z n = Zint(T)[vF e x p ( -  Eo/2kT)] "N (3) 

where vf is the so-called free-volume contribution; Eo is 
the energy of interaction of a mer at its origin within its 
cell with all other mers at the origins of their respective 
cells; and Zi. t is the contribution from the translational 
degrees of freedom of each mer and is only a function of 
the temperature. The equation of state is then derived 
using equation (2). The equation of state derived in this 
fashion has contributions from the functions vf(V) and 
Eo(V). 

In what follows, we will outline the derivation of an 
equation of state for (a) polymers with flexible backbones 
and (b) those with 'stiff' backbones. In the case of flexible 
polymers, we will assume that the mers occupy a 
hexagonal close-packed (h.c.p.) lattice structure. In the 
case of liquid-crystalline polymers, we will assume that 
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the local structure is such that domains of aligned rigid 
rods exist and that the rods are arranged with hexagonal 
symmetry. Using this picture, we can define the cell 
volume per mer for each of these cases as follows: 

v = 0.707r 3 (4) 

v = 0.866lr 2 (5) 

where r is the intermolecular separation; I is the mer-mer 
separation along the rigid backbone; and the numerical 
factors reflect the geometry of the systems. In the case 
of rigid rods, we are assuming that the molecules are not 
compressible in the direction along the chains, and in 
this fashion, explicitly include in the model the 
connectivity of the molecules. Clearly, these are very 
crude assumptions but they allow us to derive analytically 
simple equations to describe the properties of these two 
different systems. We assume that the mers interact with 
each other via a Lennard-Jones 6-12 potential of the 
form: 

ck = e[ -  (r*/r) 6 + (r*/r) 12)] (6) 

where r is the inter-mer separation; e is a characteristic 
energy; and r* is the value of r for which ~b is zero. In 
the case of the flexible polymer, we can sum this 
interaction over all the other mers, and using (4) to 
express r as a function of v we obtain: 

Eo = 4ez[ - A (v*/v) 2 + B(v*/v) 4] (7) 

where z is the number of nearest neighbours (z = 12 for 
h.c.p, lattice), A=2.4091, B =  1.011 and v*=r  .3. In the 
case of the rigid polymer chains, we first compute the 
effective interaction of a mer with a neighbouring rigid 
rod a distance r away. If we then sum the contributions 
from all the neighbouring rods on a two-dimensional 
lattice and use the relation (5), we obtain the following 
expression: 

Eo=ezr*[-A(v*/v)S/2 + B(v*/v)11/2]/l (8) 

where z is the number of neighbouring rods (z= 6), 
A= 1.327, B=0.775 and v*=O.8661r .2. 

The function of is given by the expression: 

= ja= exp{ - [ E ( a ) -  Eo]/kT} (9) 

& 

where E(a) is the interaction energy of a mer at position 
a within its cell, with all other mers placed at the origins 
of their respective cells. The integration is performed over 
the cell volume. In order to evaluate (9), we replace the 
exact cell potential with a square-well approximation. 
The function E(a)-Eo, even with the square-well 
approximation, is quite complex. To facilitate the 
calculation, the exact free volume is sphericalized so that 
it is only a function of the magnitude of a. This reduces 
the problem in our case to computing the volume of the 
largest sphere that can fit inside the volume defined by 
the square-well potential. For the case of the flexible 
polymer, we obtain the following expression: 

vf = const.(v 1/3 _ 0.8909v* 1/3)3 (10) 

where we have again expressed r and the hard-core radius 
in terms of the cell volume and v*. In the case of the 
rigid rod, we obtain: 

vf = const.(v 1/2 - 0.9322v* 1/2) 2 (11) 

In defining the hard-core radius, we have used the value 
of r for which the potentials vanish. 

Using these expressions for vf, and those previously 
derived for E 0 in the partition function (3), we can use 
equation (2) to derive the equation of state for the two 
different cases. For the case of the polymer with a flexible 
backbone, we obtain the following equation: 

1~17/7=~___ 1 7 1 / 3 / / ( 1 7 1 / 3 - 0 . 8 9 0 9 )  

- (2/7=)(12045/172 - 1.011/I7") (12) 

where P=P/P*, V=v/v* and 7==T/T*; P*, T* and v* 
are the reduction parameters, with T*=ze/ck and 
P* =ckT*/v*. In the case of the rigid-rod polymer, we 
obtain the following equation of state: 

p17/7= = 171/2/(~1/2 -0.9322) 

-(1/7=)(3.3175/175/g-4.263/1711/z) (13) 

where again P = P / P * ,  17=v/v* and 7== T/T*, but now 
T*=zer*/21ck and P*=ckT*/v*. Equation (12) is the 
usual cell model that has been shown to be a good 
description of polymer liquids s. Equation (13) is similar 
to that derived by Ishinabe and Ishikawa for the 
description of polymer glasses 7. However, we will 
consider it here as a model for the polymer liquid-crystal 
state. 

EXPERIMENTAL 

In order to study PVT properties it is essential that the 
polymers studied exist as a nematic liquid-crystal phase 
over a wide range of temperature and pressure so that 
the performance of the various theories can be 
differentiated. 

One polymer chosen was a terpolymer composed of 
the following monomers: 

at a mole ratio of 3:1:1. It was prepared by melt 
polymerization of acetates at 300°C. The inherent 
viscosity in pentafluorophenol at 60°C was 0.8 g dl - I ,  
and, based on our experience of similar polymers, this 
infers a weight-average molecular weight between 20 000 
and 40000. It is henceforth designated LCP1. Samples 
were dried and then pressed at 275°C and broken to form 
pieces with dimensions of the order 2-5 mm suitable for 
testing. 

The other polymers were a series of azomethine ether 
polymers with structure: 

(. .) 
H I! CI~s '~ CH 3 / x  

where the value of n in the flexible spacer group can vary. 
They are henceforth designated LCPn. These polymers 
have been described in detail in the literature s'9. We used 
data for those available polymers which existed in the 
nematic state over a reasonable range of temperature, 
and these had values of n=4 ,  7, 8 and 9. In order to 
obtain a moderate melt viscosity and stabilize the 
polymer for the cases where n = 4 and 8, it was necessary 
to use polymers that had been end-capped by the addition 
of 1/15th mole of p-aminoacetanilide. This was not 
necessary for the odd-numbered of the series. 
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The densities of the polymers were measured at room 
temperature and atmospheric pressure using an auto- 
pycnometer (Micromeritics) using approximately 8 g 
samples. The changes in density as a function of 
temperature and pressure were measured using a P VT 
apparatus, which has been described fully elsewhere z°. 
It consists of a sample cell containing about 1-2 g of 
sample and mercury as a containing fluid. A flexible 
bellows closes off one end of the sample cell. The 
expansion and contraction of this bellows under 
temperature and pressure changes is used to calculate 
the volume change of the sample, making allowance for 
the well known volume change of the mercury. In the 
isothermal mode, volume readings are obtained at fixed 
pressure intervals (100 kg cm-2 or about 10 MPa apart) 
at a constant temperature. The temperature is then 
changed by 8-15°C and the process repeated. The 
absolute accuracy of the device is 1-2 × 10 -3 cm 3 g-1, 
but volume changes much smaller than this can be 
resolved. A version of this P V T  apparatus is available 
from Gnomix Research, Boulder, CO. 

RESULTS 

The P V T  data for the polyester LCP1 are shown in 
Figure 1. It shows a Tg at about 80°C, increasing to about 
140°C at 2000 kg cm -2. Above the T~, there are uniform 
data associated with the liquid-crystal phase. A few per 
cent crystallinity is not expected to be observed. Thus, 
we have up to 250 K of usable data to test the theories. 

The P V T  data for the poly(azomethine ethers) are 
shown in Figures 2-5 for structures with flexible segments 
having n=4, 7, 8, 9. The principal transitions and the 
range of data in the liquid-crystalline phase used for 
testing the theories are shown in Table 1. They all show 
weak signs of a glass transition in the amorphous fraction 
a little above room temperature, and this is also evidenced 
in the polymers' physical handling properties. The 
polymers also show evidence of increased crystallization 
(densification) in a region above the Tg. The melting 
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Figure 1 P V T  data for the liquid-crystalline polyester LCPI, showing 
plots of volume against temperature at a series of pressures. Only part 
of the data is shown for clarity 
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Figure 2 PVT data for the liquid-crystalline azomethine ether 
polymer LCP4, having four CH2 groups in the flexible spacer 
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Figure 3 PVT data for the liquid-crystalline azomethine ether 
polymer LCPT, having seven CH2 groups in the flexible spacer 

transitions then occur (volume expansion), followed by 
a period in the nematic phase. The final transition from 
nematic to isotropic (further volume expansion) occurs 
at higher temperatures and tends to run into what is 
probably the limit of thermal stability shown by a falling 
off in the volume. In each case the range of data available 
in the nematic phase was about 100 K. It should be noted 
that all the transitions can be pressure-dependent. The 
Tz, melting and nematic-isotropic transition are reversed 
by pressure, depending on thermodynamic and kinetic 
considerations, and this factor is taken into account when 
choosing a data set. 

We compared the equations of state described in the 
'Theory' section with the same sets of P V T  data. We 
performed a nonlinear least-squares fit of each equation 
by minimizing the quantity: 

$ 2 = ~  [Pi(data)-Pi(fi t)]2/(N-3) (14) 
i 
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Figure4 PVT data for the liquid-crystalline azomethine ether 
polymer LCP8, having eight CH2 groups in the flexible spacer 
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Figure 5 PVT data for the liquid-crystalline azomethine ether 
polymer LCP9, having nine CH2 groups in the flexible spacer 

Table 2 The reduction parameters and goodness-of-fit parameters 
(S 2) for the polymers using the cell model (CM) and liquid-crystal 
model (LC) theories 

Polymer Model P* V* T* S 2 r 
(MPa) (era 3) (K) (MPa 2) 

LCP1 LC 1021 0.5912 4015 1.41 0.11 
CM 1004 0.6926 6023 12.6 

LCP4 LC 826 0.7114 3930 0.76 0.50 
CM 815 0.8295 5792 1.53 

LCP7 LC 945 0.7135 3300 1.98 1.29 
CM 912 0.8289 4765 1.54 

LCP8 LC 1002 0.7084 3279 0.93 0.30 
CM 959 0.8226 4721 3.06 

LCP9 LC 907 0.7450 3353 1.79 1.08 
CM 887 0.8689 4934 1.66 

Polyethylene LC 603 0.9694 3006 6.0 3.09 
CM 588 1.1265 4341 1.94 

data sets (a single isotherm, for example), the value of S 2 
as computed for the different equations is of the order 
of 0.2. This value corresponds to errors in the volume, 
which is consistent with the precision of the present 
apparatus. For  such small data sets, the various 
equations are indistinguishable and they all provide 
adequate fits to the data. Therefore, to use the regression 
sum of squares as a means to discriminate between these 
theories, we performed the fitting procedure to liquid 
data sets which encompassed the largest thermodynamic 
range available. Under these circumstances, the value of 
S 2 becomes large. Since much effort has been expended 
to eliminate systematic errors from the experimental 
procedure, these values of S 2 reflect the inability of the 
various equations to fit the data. Under these 
circumstances, it becomes a trivial matter  to compare the 
equations of state by using the regression sum of squares. 

The fits of the data to the three equations are shown 
in Table 2. Also shown is the ratio, r, of the values of S 2 
from the LC and CM models. The LC model works 
better (gives a lower S 2) for the polymers that most closely 
approximate to a rigid rod, that is the polyester LCP1, 
which has no flexible spacers, and the poly(azomethine 
ethers) with the even numbers of CH2 groups which 
might be expected to fit most easily into a liquid-crystal 
structure. The simple cell model fits better with the more 
flexible polymers. For  comparison we have also included 
fits for a very flexible polymer, polyethylene. It can be 
seen that the LC theory works poorly in this case. 

Table 1 Properties of liquid-crystalline polymers (zero pressure) 

LCP1 LCP4 LCP7 LCP8 LCP9 

T K (°C) 80 <50 <40 <50 <40 
M.p. (°C) - 220 170 180 145 
Nem.-iso. (°C) - >320 >280 >270 >265 
Minimum data used (°C) 105 235 173 189 148 
Maximum data used (°C) 356 310 282 272 254 

where N is the number  of  data points;  P(data)  is the 
measured pressure at a given value of  (V, T)  for the 
system; and P(fit) is the value of  the pressure predicted 
by the relevant equat ion  of  state. In performing nonl inear  
least-squares regression, the quantity  of  most  statistical 
significance is the regression sum of  squares,  S 2. For  small  

C O N C L U S I O N S  

It can be seen that the liquid-crystal model equation of 
state works best for those polymers which are more rigid 
and worse for those polymers which are more flexible. 
It is reasonable to infer that this is because the 
liquid-crystal model gives a better physical description 
of the structure of rigid polymers. 
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